If it's not what You are looking for type in the equation solver your own equation and let us solve it.
49x^2-4x^2=180
We move all terms to the left:
49x^2-4x^2-(180)=0
We add all the numbers together, and all the variables
45x^2-180=0
a = 45; b = 0; c = -180;
Δ = b2-4ac
Δ = 02-4·45·(-180)
Δ = 32400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{32400}=180$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-180}{2*45}=\frac{-180}{90} =-2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+180}{2*45}=\frac{180}{90} =2 $
| -11b=-44 | | -11b=-44 | | -11b=-44 | | 49x^2-4x^2=180 | | -11b=-44 | | -11b=-44 | | 3^x+3+3^x=78 | | -11b=-44 | | 7b-8+6b+7=90 | | (9+y)(4y-7)=0 | | (9+y)(4y-7)=0 | | (9+y)(4y-7)=0 | | 6b+7+7b-8=90 | | 6b+7+7b-8=90 | | (9+y)(4y-7)=0 | | (9+y)(4y-7)=0 | | 6b+7+7b-8=90 | | 6b+7+7b-8=90 | | 6b+7+7b-8=90 | | 7x-3=26+3x-3 | | 5(x+4) =6x-5 | | 5(x+4) =6x-5 | | 5(x+4) =6x-5 | | 2x+-8+-x=7 | | -4(x+16)=84 | | 2x+-8+-x=7 | | 1/4=-18x | | 2x+-8+-x=7 | | 2x+-8+-x=7 | | 2x+-8+-x=7 | | 5(5x+7)=10x+12 | | 12(5d-4)=4 |